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Abstract: Electroencephalogram (EEG) is widely used for monitoring electrical activity in the brain. Analyzing EEG signals 

by physicians is tiring and time-consuming. Therefore, machine learning techniques can be used to improve detection accuracy. 

This study created a 2-class data set consisting of 35 channels, 10575x15 seconds of normal and 11240x15 seconds of abnormal 

EEG signals. This data set was obtained by examining the EEG signals of the patients who applied to Malatya Turgut Ozal 

University Malatya Research and Training Hospital in 2021. In the study, a statistical feature extraction-based model is 

proposed. After the feature vector reduction was performed using the neighboring component analysis to the proposed model, 

the classification was made using the support vector machines. The highest accuracy out of 35 channels was obtained in the 

P4O2 channel. Accuracy, sensitivity, specificity, precision and f-score for the P4O2 channel were 81.3%, 78.9%, 83.7%, 82.0% 

and 80.4%, respectively. 
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EEG anormallik tespiti için yeni bir veri seti: MTOUH 

 

Öz: Elektroensefalogram (EEG), beyindeki elektriksel aktivitenin izlenmesi için yaygın olarak kullanılmaktadır. EEG  

sinyallerinin  hekimler tarafından incelenmesi yorucu ve zaman alıcıdır. Bu nedenle, algılama doğruluğunu artırmak için 

makine öğrenme teknikleri kullanılabilir.  Bu çalışmada 35 kanal, 10575x15 saniye normal ve 11240x15 saniye anormal EEG 

sinyalinden oluşan 2 sınıflı veri seti oluşturulmuştur. Bu veri seti Turgut Özal Üniversitesi Malatya Eğitim Araştırma Hastanesi’ 

ne 2021 yılında başvuran hastaların EEG sinyalleri incelenerek elde edilmiştir. Çalışmada istatistiksel özellik çıkarımı tabanlı 

bir model önerilmiştir. Önerilen modele komşu bileşen analizi kullanılarak öznitelik vektörü indirgemesi yapıldıktan sonra 

destek vektör makineleri kullanılarak sınıflandırma yapılmıştır. 35 kanaldan en yüksek doğruluk P4O2 kanalında elde 

edilmiştir. P4O2 kanalı için doğruluk, duyarlılık, özgüllük, kesinlik ve f-skoru sırasıyla %81.3,%78.9, %83.7, %82.0 ve %80.4 

olarak elde edilmiştir. 

 

Anahtar kelimeler: Elektroensefalografi sinyal sınıflandırması, DVM, Makine Öğrenmesi. 

 

1. Introduction 

 

Electroencephalography (EEG) is the process of recording the brain's electrical activity through electrodes 

placed on the scalp [1]. The German neuropsychiatrist Hans Berger used the term EEG and performed the first 

human EEG recording [2]. EEG has been utilized in the diagnosis and differential diagnosis of various neurological 

illnesses since the turn of the twentieth century. It has been used to diagnose epilepsy, non-epileptic psychogenic 

seizures, hypoxia, and intracranial space-occupying lesions [3]. Postsynaptic electrical potentials of pyramidal 

neurons in the cortex play a role in the formation of EEG activity. Five different brain waves have been defined 

according to their frequency ranges. Delta rhythm is 0.5-3.5 Hz, theta rhythm is 4-7.5 Hz, the alpha rhythm is 8-

14 Hz, the beta rhythm is 15-30 Hz, gamma rhythm is 30-48 Hz. In a healthy person, the dominant rhythm is alpha 

in the parietooccipital regions with eyes closed and at rest. Beta rhythm is observed while awake and eyes open. 

Theta is the dominant rhythm in shallow sleep and delta in deep sleep and anesthesia [4]. The electrodes are 

attached to the scalp during EEG recording according to the 10-20 system accepted by the international federation. 

Recordings can be performed with unipolar or bipolar montage. The most commonly used is the bipolar mount. 

In this technique, electrodes are attached to the right and left prefrontal (Fp), frontal (F), central (C), temporal (T), 

parietal (P), occipital (O), auricular (A) regions. Odd-numbered electrodes indicate the left hemisphere, and even-

numbered electrodes indicate right hemisphere localizations [5]. There are many clinical and engineering studies 

on the use of EEG signals to detect neurological diseases. Some studies on EEG signals in the literature are 

presented below. 
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Zhao et al. [6] classified the EEG signals using the 1D CNN deep learning structure. The accuracy rates obtained 

in their study were 99.52% in the two-class classification problem, 98.06% in the three-class EEG classification 

problem, and 93.55% in the five-class classification problem, respectively. Khan et al. [7] classified the features 

selected by correlation-based Q-score using an LSTM-based deep learning model after extracting the features of 

the EEG signal using HVD (Hilbert Vibration Decomposition). Their studies were conducted with two different 

data sets. An accuracy of 96.00% was achieved for the Bonn dataset and 83.30% for the Sensor Networks Research 

Lab data. Wang et al. [8] performed feature extraction from EEG signals using EMD and DWT (Discrete Wavelet 

Transform) methods. Their study obtained 92.07% accuracy, 91.13% sensitivity, and 92.96% specificity for the 

Bonn data set. Rashid et al. [9] obtained accuracy values (99.21%, 93.19%, 93.57%, and 90.32%) for CI 

Competition III, IVA, and BCI Competition IV datasets, respectively, using the kNN technique. Kumar et al. [10] 

transformed the real value mode into an analytical signal with frequency spectrum by VMD (Variable Mode 

Decomposition) method. Then, semantic feature extraction was applied to generate the features. A Random Forest 

classifier was used in the study, and a success rate of 94.1% was achieved. Sheoran et al. [11] obtained scalogram 

images by transitioning EEG signals from the time domain to frequency domain with CWT (Continuous Wavelet 

Transform). Feature extraction was performed by calculating the potential feature values of the instantaneous 

frequency components, LBP (Local Binary Patterns), and HOG (Oriented Gradient Histograms) from the obtained 

scalogram images. They obtained an accuracy value of 99.08% with the SVM classifier. Bera et al. [12] achieved 

a success rate of 98% for binary class and 84% for multiclass classification with the error correction exit codes 

(ECOC) approach using the BCI Competition-IV dataset. Ha et al [13] firstly, the motor image EEG signals in the 

BCI Competition-IV dataset were converted into 2D images using the short-term Fourier transform (STFT) 

algorithm. The converted signals were then used for training and testing the capsule network. In this study, 78.44% 

accuracy was obtained. 

2. Material and Method 

 
2.1. Dataset 

 

Ethical approval of the study was given by the Malatya Turgut Ozal University Medical Faculty Ethics 

Committee (2022/01), following the principles of the Declaration of Helsinki. Awake EEG images of patients over 

18 who applied to the electroneurophysiology laboratory were scanned retrospectively. EEG recordings were made 

in the awake state with bipolar mounting according to the 10-20 system accepted by the International Federation. 

In this technique, electrodes are attached to the right and left prefrontal (Fp), frontal (F), central (C), temporal (T), 

parietal (P), occipital (O), auricular (A) regions. Electrodes indicated with odd numbers indicate their localizations 

in the left hemisphere, and even numbers indicate their localizations in the right hemisphere. EEG signal recordings 

of the patients were recorded in 500Hz EDF format. These signals were labeled as normal and abnormal after 

being reconstructed as 15-second data packets with the help of the Matlab program for 35 channels. Patients under 

18, patients who had sleep EEG recordings, and those with intense artifacts were excluded from the study. Patient 

information and details are given in Table 1. 

 

Table 1. Dataset information 

Classes Male Female Age Number of Channels Number of Data Packs 

Normal 20 24 32.4±11.28 35 10575x15sec 

Abnormal 113 127 38.4±18.8 35 11240x15sec 

 

Furthermore, this database was published publicly and the users/researcher can download this database from 

https://www.kaggle.com/buraktaci/mtouh (accessed on 3 March 2022). 

 

2.2. Method 

 
In this work, a statistical feature extraction-based model has been presented. The presented model has been 

applied to the Collected EEG signal dataset. This model contains three primary phases: statistical feature 

extraction, feature vector reduction using neighborhood component analysis, and classification with support vector 

machine classifier. To better explain the presented model, a graph of this model is given in Figure 1. 

 

https://www.kaggle.com/buraktaci/mtouh
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Figure 1. Graph of the presented EEG signal classification model using a statistical model. 

 

The steps of the presented model are given below.  

Step 0: Read each EEG signal from the dataset. 

Step 1: Apply multilevel DWT to EEG signal to generate subbands.  

 

[𝑙𝑜𝑤1, ℎ𝑖𝑔ℎ1] = 𝐷𝑊𝑇(𝑠𝑖𝑔𝑛𝑎𝑙,′ 𝑠𝑦𝑚4′) (1) 

[𝑙𝑜𝑤𝑡+1, ℎ𝑖𝑔ℎ𝑡+1] = 𝐷𝑊𝑇(𝑙𝑜𝑤𝑡 ,′ 𝑠𝑦𝑚4′), 𝑡 ∈ {1,2, … ,8} (2) 
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𝑤2ℎ−1 = 𝑙𝑜𝑤ℎ , ℎ ∈ {1,2, … ,9} (3) 

𝑤2ℎ = ℎ𝑖𝑔ℎℎ  (4) 

Herein, 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ denote low-pass and high-pass filter subbands of the DWT (𝐷𝑊𝑇(. , . )), 𝑤 contains wavelet 

subbands. We generated 18 wavelet subbands using multilevel DWT, and both low and high subbands have been 

utilized to extract features in this work.  

Step 2: Generated statistical features from EEG signal and wavelet subbands (𝑤) to create a feature vector.  

 

𝑓1 = 𝑠𝑓𝑔(𝑠𝑖𝑔𝑛𝑎𝑙) (5) 

𝑓𝑡 = 𝑠𝑓𝑔(𝑤𝑡−1), 𝑡 ∈ {2,3, … ,19} (6) 

Herein, f are generated feature vectors, and the length of each feature vector is 12. To extract statistical features, 

maximum, minimum, average, median, mode, standard deviation, information entropy, root mean square error, 

range, mean absolute deviation, variance, skewness, and kurtosis moments have been used. By applying these 

moments, 12 statistical features have been extracted from each generated one-dimensional signal. Briefly, sfg(.) 

extracts 12 features from a signal. In this step, 19 feature vectors have been generated. 

Step 3: Merge the extracted feature vectors to obtain the final feature vector.  

 

𝑓𝑣(𝑖 + 12 × (𝑗 − 1)) = 𝑓𝑗(𝑖), 𝑖 ∈ {1,2, … ,12}, 𝑗 ∈ {1,2, … ,19} (7) 

Herein, 𝑓𝑣 is a feature vector with a length of 228 (=12×19).  

Step 3: Normalize 𝑓𝑣 applying minimum-maximum normalization. 

Step 4: Choose the most informative/distinctive 60 features employing NCA [14] feature selection model. NCA is 

the feature selection version of the k nearest neighbors (kNN) [15] method and uses distances to assign weights to 

each feature. We have selected 60 of 228 features.  

Step 5: Classify the chosen feature using the Fine Gaussian Support Vector Machine (FG-SVM) [16] [17] classifier 

with an 80:20 split ratio. 

 

3. Performance Analysis 

 
3.1. Experimental setup and Results 

 
All coding in this study was carried out with a simulation program called Matlab, which is based on the 

Windows 10 operating system. 80% of the data set used to evaluate the performance of the proposed method is 

randomly allocated for training and 20% for testing. 

Precision, sensitivity, specificity, F1-score, and accuracy metrics were used to obtain results [18, 19]. These 

metrics are generally used in machine learning. Therefore, we considered these metrics to evaluate our proposed 

method. The mathematical definition of these performance metrics is given in Equations 8-12. Also, true positive 

(TP), true negative (TN), false positive (FP), and false-negative (FN) values are used to calculate these 

performance metrics. In the study, classification was made with Fine Gaussian SVM. Classification has been 

performed for 35 different channels. The confusion matrices of the first 6 channels with the best results are given 

in Figure 1. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(8) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(9) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(11) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

(12) 

 



İrem TAŞCI, Burak TAŞCI,  Şengül DOĞAN, Türker TUNCER 

 

139 

 

Table 2. Channel-based results of the proposed method (%) 

 

 Channel Accuracy(%)  Sensitivity(%)  Specificity(%)  Precision(%)  F-Score(%)  

P4O2 81.3 78.9 83.7 82.0 80.4 

C3P3 81.1 74.7 87.1 84.5 79.3 

P3O1 80.9 78.3 83.3 81.5 79.9 

C4P4 80.3 76.6 83.8 81.7 79.1 

F3C3 79.7 73.1 85.8 82.9 77.7 

F4C4 79.4 76.6 82.1 80.1 78.3 

P3A1 79.3 75.9 82.4 80.2 78.0 

C4A2 78.8 75.0 82.3 79.9 77.4 

T6A2 78.7 70.5 86.4 83.0 76.3 

T4T6 78.4 70.7 85.8 82.6 76.2 

F7A1 78.2 75.2 81.0 78.8 77.0 

F8T4 78.1 71.8 84.0 80.9 76.1 

F3A1 78.1 73.8 82.2 79.6 76.5 

T3T5 78.0 71.8 83.9 80.8 76.0 

T6O2 77.6 70.2 84.5 81.0 75.2 

C3A1 77.5 73.2 81.5 78.9 75.9 

O2A2 77.1 70.9 82.8 79.5 75.0 

F4A2 76.8 74.0 79.4 77.1 75.5 

P1F3 76.6 70.5 82.2 78.9 74.5 

O1A1 76.4 72.4 80.1 77.4 74.8 

P4A2 76.4 72.2 80.2 77.5 74.8 

T5O1 76.1 72.8 79.3 76.8 74.7 

P1F7 75.8 71.4 80.0 77.0 74.1 

P1A1 75.6 67.8 82.9 78.9 72.9 

T4A2 75.5 66.1 84.3 79.9 72.4 

F7A1 75.5 68.1 82.4 78.4 72.9 

CZA1 75.2 65.6 84.3 79.7 72.0 

T5A1 75.1 67.5 82.3 78.2 72.5 

P2F4 75.0 66.1 83.3 78.8 71.9 

P2F8 75.0 66.1 83.3 78.8 71.9 

PZA2 74.9 74.6 75.3 73.9 74.2 

P2A2 74.9 66.8 82.5 78.2 72.1 

F8A2 74.7 66.0 82.8 78.3 71.6 

T3A1 74.4 68.6 79.9 76.2 72.2 

FZA2 74.2 67.4 80.6 76.6 71.7 

 

The highest results for accuracy sensitivity and F-Score, with 78.9% and 80.4%, respectively, were obtained 

at the P4O2 channel. The highest results for specificity and precision, 87.1% and 84.5%, respectively, were 

obtained in the C3P3 channel. Lowest accuracy at 74.2% at FZA2 channel, lowest sensitivity at 66.0% at F8A2 

channel, lowest specificity at 79.3% at T5O1 channel, lowest precision at 73.9% at PZA2 channel, and lowest F-

score(%) at FZA2 channel at 71.7% has been obtained. 
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Figure 2. Confusion matrices of 6 channels. 

Performance metrics are calculated using these confusion matrices. The performance ratios calculated for 35 

channels are tabulated in Table 2. 

 

4. Conclusions 

 
In this study, a feature selection-based decision support system was proposed to detect abnormal EEG signals. 

In the study, feature extraction was performed for each channel difference of the EEG. The highest classification 

accuracy was obtained with the P4O2 channel. In the process, it is aimed to increase the classification performance 

and accuracy and reduce the cost. It is expected that the study will help physicians in diagnosis. 

The primary purpose of this article is to classify abnormal EEG signals in the newly created data set. In future 

studies, the number of data and classes in the dataset will be increased. 
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