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 CURRENT
OPINION Radiomics and deep learning approach to the

differential diagnosis of parotid gland tumors

Emrah G€und€uza, Ömer Faruk Alçinb, Ahmet Kızılayc, and Cesare Piazzad

Purpose of review

Advances in computer technology and growing expectations from computer-aided systems have led to the
evolution of artificial intelligence into subsets, such as deep learning and radiomics, and the use of these
systems is revolutionizing modern radiological diagnosis. In this review, artificial intelligence applications
developed with radiomics and deep learning methods in the differential diagnosis of parotid gland tumors
(PGTs) will be overviewed.

Recent findings

The development of artificial intelligence models has opened new scenarios owing to the possibility of
assessing features of medical images that usually are not evaluated by physicians. Radiomics and deep
learning models come to the forefront in computer-aided diagnosis of medical images, even though their
applications in the differential diagnosis of PGTs have been limited because of the scarcity of data sets
related to these rare neoplasms. Nevertheless, recent studies have shown that artificial intelligence tools
can classify common PGTs with reasonable accuracy.

Summary

All studies aimed at the differential diagnosis of benign vs. malignant PGTs or the identification of the
commonest PGT subtypes were identified, and five studies were found that focused on deep learning-based
differential diagnosis of PGTs. Data sets were created in three of these studies with MRI and in two with
computed tomography (CT). Additional seven studies were related to radiomics. Of these, four were on
MRI-based radiomics, two on CT-based radiomics, and one compared MRI and CT-based radiomics in the
same patients.
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INTRODUCTION

In the 1940s, the advent of programmable digital
computers prompted scientists to ponder on the
boundaries of what machines could do [1]. The idea
led to the coining of the term ‘artificial intelligence’,
defined differently depending on the source but
based on the overall notion that a computer can
replicate human cognitive capabilities. Advances in
computer technology and growing expectations
from computer-aided systems have led artificial
intelligence to evolve into subsets, such as machine
learning and deep learning [2]. The use of these
systems in radiological diagnosis is revolutionizing
the artificial intelligence field [3

&

,4], with machine
learning and deep learning in medical imaging ush-
ering in an exciting era with re-engineered and re-
imagined clinical and research capabilities [5].

An important driver of the emergence of artifi-
cial intelligence in medical imaging has been the
enhancement of visual recognition to produce lower

error rates than those attained among human
observers [6,7]. Specific capabilities of artificial intel-
ligence in medical imaging include, without being
limited to, detection and classification of lesions,
automated image segmentation, data analysis,
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prioritizing reporting and study triage, and image
reconstruction [5]. Additionally, artificial intelli-
gence algorithms may be used to extract ‘radiomics’
information and features from pictures that are not
visible to the naked eye, possibly enhancing the
diagnostic and prognostic utility of image collec-
tions [8].

There are several applications of machine learn-
ing and deep learning that are of clinical interest for
head and neck imaging, including delineation of
organs/tissues at risk or primary tumor for radiation
therapy, tumor segmentation, detection, and pheno-
typing, and precision oncology applications, such as
prediction of histopathology or molecular pheno-
type, response to treatment, and survival [2,9–12].
In addition, machine learning and deep learning-
based studies on specific organs of the head and neck,
such as cervical lymph nodes, parotid, thyroid, and
oral cavity, in which neoplasms can raise issues in the
differentiation of benign vs. malignant lesions or in
determining histotypes, are increasing. These studies
have led to enthusiasm for the development of new
noninvasive differential diagnostic methods for head
and neck tumors using machine learning and deep
learning models created with datasets consisting of
clinical and radiological images.

Salivary gland tumors constitute 3–12% of head
and neck neoplasms of which 80% originate from
the parotid [13]. Preoperative tumor localization,
differential diagnosis, and ensuing choice of the
most adequate treatment are clearly important in
parotid gland tumors (PGTs). However, the relative
rarity of such neoplasms and the high dispersion of

their possible histotypes in the latest WHO Classifi-
cation [13] create the unmet need of having subtle
differential diagnosis of such neoplastic lesions
based upon preoperative radiomics. In fact, clinical
features alone make it challenging to diagnose
malignant PGTs as early symptoms, such as pain
and palpable lesions are nonspecific [14,15].
Although the diagnostic strategy may greatly vary,
medical imaging, such as ultrasonography, com-
puted tomography (CT), MRI, and fine needle aspi-
ration cytology (FNAC) are frequently used [16,17].
In particular, the latter has an accuracy in discrimi-
nating benign vs. malignant tumors from 85 to 97%
[18–20]. However, because of the difficulty of sam-
pling, especially in deep lobe tumors, and the het-
erogeneity of the tumor itself, FNAC is sometimes
inadequate and not representative of the true nature
of the lesion [21

&

]. Additionally, it may result in
tumor cell spread, increasing the likelihood of local
recurrence, and, in rare cases, risk of infection [22].
In addition to FNAC, preoperative imaging plays an
important role in evaluating the location and nature
of the tumor for adequate surgical planning. Ultra-
sonography and CT are common imaging modali-
ties for differential diagnosis of PGTs, but both have
significant limitations [23]. MRI is generally the
preferred imaging modality for parotid masses
because of its well known capability of providing
high resolution of soft tissues, showing tumors
located in the deep lobe clearly, distinguishing peri-
neural and surrounding soft tissues invasion, and
providing better information about the nature and
anatomical localization of the PGT [24,25]. It is
essential that imaging methods performed are eval-
uated by an expert head and neck radiologist, and
that a fast and accurate result is reached. In this
review, artificial intelligence applications developed
within the field of radiomics and deep learning
methods used in the differential diagnosis of PGTs
will be emphasized.

RADIOMICS AND DEEP LEARNING IN
MEDICAL IMAGING

The majority of artificial intelligence applications in
head and neck imaging are in their infancy; how-
ever, widespread use and integration into healthcare
are not far off. A working knowledge of fundamental
words and ideas enables improved interpretation of
the medical literature, cooperation with data scien-
tists, and involvement in the decision-making pro-
cesses that is necessary prior to workflow integration
[2]. Artificial intelligence is a broad concept that
covers several techniques to make machines think
like humans [26] and encompasses two major fields:
machine learning and deep learning. Machine

KEY POINTS

� An important driver of the emergence of artificial
intelligence in medical imaging has been the
enhancement of visual recognition to produce lower
error rates than those observed among
human observers.

� The use of artificial intelligence tools, such as deep
learning and radiomics analysis is revolutionizing
computer-aided systems in medicine.

� Deep learning and radiomics applications in the
differential diagnosis of parotid gland tumors (PGTs)
have been limited because of the scarcity of data sets
related to these neoplasms.

� Recent studies have shown that artificial intelligence
applications can classify common PGTs with
reasonable accuracy.

� Future developments of artificial intelligence
applications will include greater integration in daily
practice thanks to user-friendly graphical interfaces.
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learning can be described as a collection of data-
driven methodologies and algorithms to predict or
infer new situations from historical data [26,27].
There are several machine learning algorithms in
use, such as neural networks, support vector
machine, and k-nearest neighbor. In particular,
neural networks are composed of layers, that is,
functions that are linked in the same way that
human neurons are and perform in parallel. Neural
networks with several hidden layers are classified as
‘deep’. Deep learning is based on a network of
interconnected multilevel algorithms that resem-
bles a neural network. In other words, deep learning
is a set of complicated routines that discovers con-
nections in raw data automatically. Higher abstrac-
tion is extracted from the data to produce this
collection. Deep learning uses a structure that
mimics that of a human brain and can extract
features like radiomics from medical images with-
out requiring human intervention [28]. Radiomics
is a frequently used method of mining objective and
quantitative features, such as shape, intensity, and
energy of regions of interest from medical images
(e.g. gray-level co-occurrence matrix and run length
matrix features), describing the relationships
between image voxels far beyond the traditional
visual features that can be obtained, and thus
reflecting the underlying genetic and biological
variability of the tissue analyzed, which can pro-
mote accurate diagnosis and individualize cancer
treatment [29].

RADIOMICS AND DEEP LEARNING
APPLICATIONS IN DIFFERENTIAL
DIAGNOSIS OF PAROTID GLAND TUMORS

The development of artificial intelligence models
has opened new scenarios owing to the possibility of
noninvasively assessing features of medical images
that are not evaluated by physicians [30]. PGTs are
rare tumors of the head and neck; however, because
of important adjacent anatomical structures, their
precise preoperative classification can help to guide
the surgical plan correctly and prevent avoidable
complications as well as overtreatments or under-
treatments. deep learning and radiomics applica-
tions in the differential diagnosis of PGTs have so
far been limited because of the scarcity of data sets
related to these lesions. In this review, the concepts
relevant to the search terms were defined as ‘Deep
Learning’, ‘Radiomics’, ‘Parotid Gland Tumors’ and
‘Medical Imaging’. Table 1 summarizes the 12
articles retrieved by the search terms. Five articles
are focused on deep learning-based PGTs differential
diagnosis. The remaining seven articles are related
to radiomics-based PGTs differential diagnosis. The

data sets consist of MRI images in seven manuscripts
and CT images in four. In one study, the data set was
created with both MRI and CT imaging techniques.
All studies aimed at the differential diagnosis of
benign vs. malignant PGTs or between the com-
monest histotypes of PGTs.

Chang et al. proposed an automatic approach to
diagnose PGTs from MRI and classify them by using
deep learning architecture. In this study, two-
dimensional convolutional neural network, called
U-Net, was employed to accomplish a fully auto-
matic system. The authors constructed the data set
with pleomorphic adenoma (PMA), Warthin
tumors, and malignant tumors from 85 patients
using five MRI sequences, namely conventional
T1-weighted (T1W) with contrast enhancement,
T2-weighted (T2W), diffusion-weighted b0, b1000,
and Apparent Diffusion Coefficient (ADC) maps.
The results showed that diffusion weighted sequen-
ces-based deep learning models have better perfor-
mance than conventional MRI sequences. The deep
learning model with diffusion weighted images
yielded accuracy of 0.81, 0.76, and 0.71, sensitivity
of 0.83, 0.63, and 0.33, and specificity of 0.80, 0.84,
and 0.87 for Warthin tumors, PMA, and malignant
tumors, respectively [31

&

].
In another deep learning study on MRI, Xia et al.

evaluated 123 patients by T1W, T1W with contrast
enhancement, and T2W imaging series. A total of
3791 parotid gland region images were cropped and
labeled as PMA, Warthin tumors, malignant tumors
or tumor-free based on histological results. The
ResNet18 DL architecture was modified to classify
these images. The accuracy of the architecture in the
test set to correctly diagnose and classify PGTs was
82.18%, and the micro-AUC was 0.93 [21

&

].
In another study, the authors stated that with

their proposed anomaly detection and VGG16-
based deep learning method, the classification of
benign and malignant PGTs could also be successful
in a small amount of imbalanced distributed data
[3

&

]. They used nonmedical images obtained from
the CUReT data set [32] to reduce the overfitting
caused by the small number of images and facilitate
the removal of general visual models of the PGT.
According to the histopathological results, T1W and
T2W conventional MRI images containing 190
benign and 55 malignant PGTs were cropped to
obtain input data for the VGG16 DL model. They
evaluated the diagnostic accuracy of the proposed
method and compared it with a board-certified radi-
ologist’s results. According to the diagnostic perfor-
mance observed, the proposed methods
outperformed radiologists. Although the model’s
ROC-AUC was 0.86 and PR-ROC was 0.77, the radi-
ologist’s ROC-AUC was 0.74 and PR-ROC 0.51.
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Although MRI is preferred in PGT evaluation
because of its superior soft tissues resolution, CT is
another widespread imaging method, frequently
used for its more favorable cost-effectiveness profile
and quicker examination time. Zhang et al. used five
deep learning models trained with CT images of 230
PGTs (139 benign and 91 malignant). In their study,
the four pretraining models of VGG16, Incep-
tionV3, ResNet, and DenseNet using transfer learn-
ing methods and an improved convolutional neural
network model were used. The results show that the
improved neural network model achieved an accu-
racy of 97.78%, and its classification performance

for PGTs was better than those of the other four
transfer learning methods [33

&

].
In another deep learning model trained with CT

images, Yuan et al. aimed to make the differential
diagnosis of PMA and malignant tumors automati-
cally and with high accuracy. They used data sets of
CT images containing 101 PMA and 51 malignant
tumors and the ResNet50 model. The authors
obtained that the accuracy of the test set merges
to 90% when the model was iterated 1000 times, and
stated that this study has practical importance and
application value for the auxiliary differential diag-
nosis of PGTs and other head and neck tumors [34].

Table 1. Summary of radiomics and deep learning related works on differential diagnosis of parotid gland tumors

Authors Methods
Imaging
technique

Datasets n and i denote
patients and images
number, respectively Classes Accuracy (%)/AUROC

Chang et al. [31&] Two-dimensional
CNN

MRI WT (n¼27)
PMA (n¼33)
MT (n¼25)

WT, PMA, MT Acc: 81%
Acc: 76%
Acc: 71%

Xia et al. [21&] ResNet18 MRI WT (i¼594),
PMA (i¼771) MT (i¼954)
Free of tumors (i¼991)

PMA vs. WT vs. MT vs
Free of tumor

Acc: 82.18% (overall)

Matsuo et al. [3&] VGG16, Anomaly
detection

MRI Benign tumors (n¼190)
MT (n¼55)
CUReT texture database

BT vs. MT vs. CUReT
Radiologist

AUROC (AI) 0.86 (overall)
AUROC (radiologist):

0.74

Zhang et al. [33&] Improved CNN
model, VGG16,
InceptionV3,
ResNet and
DenseNet

CT BT (n¼139)
MT (n¼91)

BT vs. MT Acc (improved CNN
model): 97.78%
(overall)

Yuan et al. [34] ResNet50 DL model CT PMA (n¼101)
MT (n¼51)

PMA vs. MT Acc: 90%

Gabelloni et al. [35&] Radiomics features
þ SVM

MRI PMA (n¼32)
WT (n¼23)
Oncocytomas (n¼6)
MT (n¼14)

PMA vs. WT, PMA vs. MT Acc: 89.09%
Acc: 80.43%

Zheng et al. [36&] Radiomics features MRI PMA (n¼69)
WT (n¼58)

PMA vs. WT AUROC: 0.918

Zheng et al. [37&] Radiomics features MRI BT (n¼60)
MT (n¼55)

BT vs. MT AUROC: 0.938

Piludu et al. [38&] Radiomics features
þ SVM

MRI BT (n¼24)
WT (n¼13)
MT (n¼32)

WT vs. MT
BT vs. WT
BT vs. MT

Acc: 86.7%
Acc: 91.9%
Acc: 80.4%

Xu et al. [39&] Radiomics features
þ SVM

CT 125 PGTs patients SVM model
Radiomics signature
Location
Lymph nodes status

Acc: 83.5%
Acc: 77.1%
Acc: 65.3%
Acc: 60.8%

Zhang et al. [40&] Radiomics features CT Low-grade MEC (n¼9)
High-grade MEC (n¼9)

Low-grade MEC vs.
high-grade MEC

AUROC: 0.802

Liu et al. [41&] Radiomics features MRI and
CT

626 PGTs patients
(PMA and WT)

MRI-based radiomics
(PMA vs. WT) vs.
CT-based radiomics
(PMA vs. WT)

MRI: 0.716 (border index
AUROC)

CT: 0.608 (border index
AUROC)

AUROC, area under the receiver operating characteristic; BT, benign tumors; CNN, convolutional neural networks; CT, computed tomography; DL, deep learning;
MEC, mucoepidermoid carcinoma; MT, malignant tumors; PGTs, parotid gland tumors; PMA, pleomorphic adenoma; SVM, support vector machines; WT,
Warthin tumor.
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Another way of image analysis with artificial
intelligence is radiomics as previously mentioned.
Gabelloni et al. studied MRI radiomics analysis to
differentiate PGTs. Seventy-five T2W images of
parotid gland lesions, namely 32 PMA, 23 Warthin
tumors, 6 oncocytomas, and 14 malignant tumors,
were included in the study. The most discriminative
radiomics features were used to train a support
vector machine classifier. The best classification
performance was the differentiation between PMA
and Warthin tumors with a sensitivity, specificity
and diagnostic accuracy of 0.8695, 0.9062, and
0.8909, respectively. The second-best classification
performance was obtained by comparing PMA with
malignant tumors, with sensitivity, specificity, and
diagnostic accuracy of 0.6666, 0.8709, and 0.8043,
respectively. The authors stated that radiomics fea-
tures of conventional T2W MRI images based on a
histogram and gray-level co-occurrence matrix can
help to differentiate PMA from Warthin tumors and
malignant tumors with high sensitivity, specificity,
and diagnostic accuracy [35

&

].
Zheng et al. established an MRI-based radiomics

nomogram for preoperative differential diagnosis
between Warthin tumors and PMA. A total of 127
patients with histological diagnosis of Warthin
tumors or PMA were enrolled in a training set of
34 Warthin tumors and 41 PMA, and an external test
set of 24 Warthin tumors and 28 PMA. Radiomics
features were extracted from axial T1W and T2W
sequences. The authors found that the radiomics
signature had a notable predictive value in differen-
tiating parotid Warthin tumors from PMA, with an
AUC of 0.953 and 0.918 for the training and test sets,
respectively [36

&

]. In another study, Zheng et al.
[37

&

] applied clinical factors and radiomics signa-
tures to logistic regression analysis for differential
diagnosis of 60 benign and 55 malignant PGTs by
T1W and T2W MRI sequences. The authors obtained
an AUC value of 0.952 in the training set and 0.938
in the validation set [37

&

].
Piludi et al. extracted MRI-based radiomics fea-

tures from T2W images and diffusion-weighted ADC
maps. The created model for discriminating
between Warthin tumors vs. malignant tumors,
benign vs. Warthin tumors, and benign vs. malig-
nant tumors had an accuracy of 86.7, 91.9, and
80.4%, respectively [38

&

].
In the diagnosis of PGTs, CT is used less fre-

quently as it provides limited information about soft
tissues [24]. However, while some information
might not be properly evaluated by physicians
through the naked eye, they can possibly be
extracted from CT through radiomics features. With
this thought in mind, Xu et al. aimed to develop a
prediction model based on clinical–radiological

data and CT-based radiomics to discriminate
between benign vs. malignant PGTs. In their work,
378 radiomics features were extracted from CT
images and dimensionality reduction used to obtain
a radiomics signature. Location, lymph nodes
metastases, and rad-score were found to be indepen-
dent predictors of tumor malignancy in an analysis
of variance and multivariable logistic regression
analysis [39

&

].
Zhang et al. determined if CT-radiomics features

of mucoepidermoid carcinomas (MECs) can differ-
entiate low-grade tumors from high-grade tumors.
The authors collected a data set of 18 MECs whose 9
were low-grade and the rest high-grade. After man-
ual segmentation of tumors, radiomics features were
compared between low-grade and high-grade MECs.
The authors found no significant individual radio-
mics features that could differentiate low-grade and
high-grade MECs. However, a logistic regression
model including surface regularity and two gray-
level co-occurrence matrix features (energy and
information measure II of correlation) was able to
predict high-grade MECs with a sensitivity of 89%
and a specificity of 68%. The AUC was 0.802. Thus,
the authors concluded that high-grade MECs tend
to have a low energy, high correlation texture, as
well as surface irregularity [40

&

].
In another interesting study on radiomics and

PGT, MRI and CT-based radiomics were compared in
terms of differential diagnosis of PMA and Warthin
tumors. The authors extracted 123 radiomics fea-
tures from MRI and CT images of 626 PGTs, and
found a diagnostic performance of rad-score and
border index AUC for MRI of 0.911 and 0.716,
respectively, whereas those of CT were 0.876 and
0.608, respectively. MRI and CT-based rad-score of
both modalities showed no statistically significant
differences but tumor border index and tumor mar-
gin examination properties on MRI had superior
diagnostic performance over CT [41

&

].

CONCLUSION

The studies reviewed in this article have shown that
artificial intelligence applications can classify com-
mon PGTs with reasonable accuracy. Artificial intel-
ligence models that are able to make more detailed
classifications will be developed when larger data
sets including images of rare PGTs will be obtained.
In fact, histological grading of these tumors can be
made more sensitive thanks to the appropriate
radiomics analysis.

Artificial intelligence applications for medical
images have received the necessary attention in
recent years and will offer solutions to more com-
plex problems with future developments in

Artificial intelligence approaches for parotid gland tumors G€und€uz et al.
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computer technology. Although the studies
reviewed herein are still in their infancy and do
not offer a general benefit for the physician, over
time artificial intelligence applications will
undoubtedly be more integrated in medical practice
thanks to user-friendly graphical interfaces. Poten-
tially, with artificial intelligence models integrated
with the Picture Archiving and Communication
Systems (PACS), it will be possible to obtain real-
time diagnostic reports in only minutes after medi-
cal images are taken. In addition, recurrence detec-
tion could become possible with deep learning
models analyzing postoperative radiological images.

Future deep learning models will enable facial
nerve mapping and navigation prior to parotid
gland surgery, and this will potentially help avoid-
ing a number of nerve-related complications. By
combining virtual reality devices and ‘metaverse’
research with artificial intelligence models, the com-
plex anatomy of the parotid region will be hopefully
visualized with an unparalleled degree of accuracy,
thus contributing to surgical training.
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