Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Arslanoğlu, Hasan" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Drying behavior for Ocimum basilicum Lamiaceae with the new system: exergy analysis and RSM modeling
    (Springer, 2021) Demirpolat, Ahmet Beyzade; Aydoğmuş, Ercan; Arslanoğlu, Hasan
    In this study, drying kinetics of Arapgir purple basil leaves under the isothermal and non-isothermal conditions have been investigated. Effective methods were evaluated by drying freshly collected basil leaves in the sun, isothermal, and non-isothermal systems. Energy efficiency was compared in different drying processes by performing exergy analysis in the drying process. It has been observed that the energy consumed and lost especially in the convection drying system (tray dryer) is very high. In the experiments performed in the PID (proportional integral derivative) system, the lowest efficiency was found in the isothermal process. Accordingly, the most suitable system in exergy efficiency was determined as the non-isothermal PID system. Maximum energy loss and minimum exergy efficiency were found at 45 °C temperature and 3.0 m/s airflow rate in the convection drying process. Exergy efficiencies were found to be approximately 4% in the convection tray dryer, 26% in the PID system under isothermal conditions, and 32% in the PID system under non-isothermal conditions. Optimization parameters in the drying process were determined by the response surface methodology (RSM), and the kinetic models were compared with the help of statistical analyses in the experiments. Midilli and Kucuk model has been found as the most compatible kinetic equation with the experimental data. According to this model results, correlation coefficient (R2?>?0.990), sum of squared error (SSE?0.005), chi-square (?2?1·10?5), and root mean square error (RMSE?0.003) values have been evaluated.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Isothermal and non-isothermal drying behavior for grape (Vitis vinifera) by new improved system: exergy analysis, RSM, and modeling
    (Springer, 2021) Aydoğmuş, Ercan; Demirpolat, Ahmet Beyzade; Arslanoğlu, Hasan
    In this study, drying of grape (Vitis vinifera) in isothermal and non-isothermal conditions has been done with the newly improved proportional integral derivative (PID) system. The average energy efficiency has been calculated in the processes in which the grapes are dried is 53.4% in the isothermal PID system, 59.7% in the non-isothermal PID system, and 30.5% in the tray dryer (forced convection). To maximum exergy efficiency in the tray dryer, the experimental optimization is made according to the response surface methodology (RSM). In the RSM design, the results have been evaluated by working at different airflow rates (1.5 m/s, 2.2 m/s, 2.9 m/s) and different temperatures (298 K, 308 K, and 318 K). In natural conditions, the drying of grapes took approximately 8 days in the sun and 11 days in the shade. A new shrinkage model has been improved based on the transformation rate, considering the drying behavior of grape grains. The consistency of the obtained model equation with the experimental data has been determined with the help of statistical analysis (R2 0.9987, SST 0.0098). Moreover, when the diffusion behavior of grapes has been investigated, it is determined that both temperature and airflow rate increase the effective diffusion coefficient in the tray dryer. The maximum effective diffusion coefficient in the tray dryer is 2.11·109 m2/s at a temperature of 318 K and an airflow rate of 2.9 m/s.

| Malatya Turgut Özal Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Malatya Turgut Özal Üniversitesi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim