Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Yeni, Yeşim" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Investigation of the İn Vitro Effect of Vanillic Acid on Wound Healing via FN1 and COL1?1 Genes
    (2024) Yeni, Yeşim
    Objective: Wound healing is characterized by the removal of dead/damaged tissue, the formation of new tissue, and finally, the restoration of the damaged tissue to its original function, starting from the moment of tissue injury. Vanillic acid (VA) is an important component of wheat bran and can heal wounds thanks to its antioxidant potential. This work aimed to investigate the dose-dependent effects of VA (1-2-4-8-16 and 32 ?g/ml) in an in vitro way using a wound healing pattern in fibroblast cells. Methods: The MTT test was performed to determine cell viability 48 hours after VA application to the cells in which the wound model was created (except for the control and wound groups). The cells were examined morphologically with an inverted microscope. ELISA and Real-Time PCR analyses were performed to determine changes in oxidative stress parameters and FN1 and COL1?1 gene expressions. Results: The highest percentage closure rate of fibroblast cells in the in vitro wound pattern analysis and the highest percentage of cell viability by MTT analysis were determined in the VA-32 treated group. Morphological images showed that the evaluated gene expressions increased in fibroblast cells in a VA dose-dependent manner. Conclusion: Our findings demonstrated for the first time that VA promotes cell migration and proliferation by regulating oxidative stress and FN1A and COL1?1 genes. The results of this work are thought to pioneer the use of VA in in vivo wound healing studies.
  • Küçük Resim Yok
    Öğe
    NEUROPROTECTIVE EFFECT OF CHLORZOXAZONE AGAINST GLUTAMATE TOXICITY IN RAT PRIMARY CORTEX NEURON CULTURE
    (2024) Yeni, Yeşim; ÇIÇEK, BETÜL; Hacimuftuoglu, Ahmet
    Glutamate (Glut) toxicity is one of the main causes of neurological diseases. Chlorzoxazone (CZ) is a muscle relaxant used to decrease pain and inflammation associated with acute and chronic twists and bruises. Here, we objected to research the neuroprotective effect of CZ applied to reverse Glut-induced neurodegeneration in the neonatal cerebral cortex through anti-inflammatory and antioxidant mechanisms. Neonatal cortical neurons were exposed to Glut and different doses of CZ (10, 20, and 40 µM) were applied to assess the effect of CZ on Glut toxicity. We then examined changes in cell viability, inflammation, and oxidative stress. Our cell viability analysis showed that CZ protected cells from Glut-induced neuronal damage. In addition, the neuroprotective properties of CZ were evaluated by examining oxidative and antioxidant parameters such as MDA, MPO, CAT, GSH, GPx, and SOD. In line with the data obtained, it was observed that the cell viability rate decreased to 60% in the Glut group. However, with CZ application, the most significant increase in cell viability was seen at the 40 ?M dose (86%), while the least increase was seen at 10 ?M CZ (77%). It also proved that CZ increased the activity of antioxidant parameters while reducing oxidative parameters and inflammation. Therefore, the present findings collectively demonstrated that CZ potently inhibits Glut-induced injury in neonatal cortical neurons. The present work is the initial to show the protective effect of CZ in neonatal cortical neurons exposed to Glut excitotoxicity and suggesting that CZ may be used as a therapeutic agent.
  • Küçük Resim Yok
    Öğe
    Nicorandil mitigates glutamate excitotoxicity in primary cultured neurons
    (2024) ERTUGRUL, MUHAMMED SAIT; Okkay, Ufuk; Yeni, Yeşim; Genç, Sıdıka; Balpınar, Özge; Okkay, Irmak Ferah; Hacimuftuoglu, Ahmet
    Excitotoxicity, caused by the excessive release of glutamate, leads to the activation of the apoptotic process, making it a crucial factor in age-related neurodegenerative diseases. The aim of this study was to investigate the potential of nicorandil to prevent glutamate excitotoxicity and reduce oxidative stress in the brain by analyzing the effects of nicorandil on primary cortex neurons. The study used primary neuron cultures from newborn Sprague-Dawley rats to examine the impact of nicorandil on cell viability, Superoxide Dismutase, Catalase, Glutathione activity, Malondialdehyde levels, total antioxidant capacity, and total antioxidant status of neurons subjected to glutamate-induced excitotoxicity. Nicorandil at varying concentrations was introduced in the culture to assess its protective effects on the neurons. The results showed that nicorandil significantly improved cell viability and total antioxidant capacity levels and reduced total antioxidant status values in a concentration-dependent manner. These findings indicate that nicorandil effectively prevented glutamate excitotoxicity by reducing oxidative stress. The study suggests that nicorandil holds the potential for treating neurodegenerative diseases caused by glutamate excitotoxicity. This study is the first to report the potential of nicorandil to inhibit oxidative stress and prevent glutamate excitotoxicity in primary neurons, providing a basis for further exploration of the clinical application of nicorandil in neurodegenerative diseases.
  • Küçük Resim Yok
    Öğe
    The SH-SY5Y Human Cell Line: Hawthorne Berry (Crataegus spp.) Protects against 6-OHDA Induced Neurotoxicity In Vitro Model of Parkinson's Disease
    (İstanbul Gelisim University, 2023) Yeni, Yeşim; Hacımüftüoğlu, Ahmet
    Aim: We purposed to study the neuroprotective effects of Hawthorn berry (crataegus spp.) extract, which is familiar to have antioxidant and anti-inflammatory features, opposite the neurotoxicity led to by 6-OHDA in SH-SY5Y cells. Method: SH-SY5Y cells were treated with Hawthorn berry (25-50-75 and 100 ?g/mL) for two hours ago 6-OHDA administration. Cells were exposed to 200 µM 6-OHDA for 24 hours to mimic the in vitro Parkinson's disease model. After one day, cell viability was measured by lactate dehydrogenase and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis. Oxidative stress was evaluated with tumor necrosis factor-?, interleukin-1?, superoxide dismutase, catalase, glutathione, glutathione peroxidase, myeloperoxidase, and malondialdehyde assays. Results: It was found that the viability rate of Hawthorn berry increased depending on the concentration and the cell viability was 94% at the highest concentration (p<0.001). Also, 6-OHDA raised lactate dehydrogenase leakage in SH-SY5Y cells (p<0.001). While 6-OHDA exacerbated oxidative stress by enhancing tumor necrosis factor-?, interleukin-1?, myeloperoxidase, and malondialdehyde (p<0.001), pretreatment with Hawthorn berry alleviated these toxic effects of 6-OHDA through antioxidant capacity by increasing glutathione peroxidase, superoxide dismutase, catalase and glutathione (p<0.05), (p<0.001). In line with all findings, Hawthorn berry attenuated neuronal cell demise in a dose-dependent manner. Conclusion: Considering its neuroprotective role as well as its effects on oxidative stress, Hawthorn berry could be a potential natural bio-medicine to prevent the development of Parkinson's disease.
  • Küçük Resim Yok
    Öğe
    Wound Healing of Quinic Acid in Human Dermal Fibroblasts by Regulating Expression of FN1 and COL1A1 Gene
    (2022) Genç, Sıdıka; ÇIÇEK, BETÜL; Yeni, Yeşim; Hacimuftuoglu, Ahmet
    Quinic acid (QA) is an alicyclic organic acid widely found in plants. It accumulates in varying concentrations of plant species and is actively metabolized throughout the plant's life cycle. Wound healing after skin injury involves a complex interaction of many cells, fibroblasts, endothelial cells, and regenerated immune cells and their interrelating extracellular matrix. In our study, the healing effect of QA on scar tissue was studied. For this aim, oxidative stress, and changes in FN1 and Collogen1? gene levels were examined. For this purpose, fibroblast cells were seeded in 24, 96 and well plates for wound healing, MTT analysis and Real-Time PCR testing (respectively). Wells were drawn with a 100 µL pipette tip for wound line. As a conclusion of our study, it was determined that cell viability increased significantly, especially in the QA 20 µg-ml group at the end of 48 hours. Increased cell viability and antioxidant capacity resulted in increased cell proliferation. Both FN1 and COL1A1 gene expression levels were up regulated in the QA groups compared to the control group. Our findings show for the first time that quinic acid promotes migration and/or proliferation of fibroblasts by regulating oxidative stress and the FN1A and COL1A1 genes. This activity may be related to the production of FN1A and COL1A1, which are considered important targets for modulation of the tissue repair process.

| Malatya Turgut Özal Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Malatya Turgut Özal Üniversitesi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim