Turkish OCR on mobile and scanned document images
| dc.contributor.author | Karasu, Kurtuluş | |
| dc.contributor.author | Baştan, Muhammet | |
| dc.date.accessioned | 2025-10-24T18:06:41Z | |
| dc.date.available | 2025-10-24T18:06:41Z | |
| dc.date.issued | 2015 | |
| dc.department | Malatya Turgut Özal Üniversitesi | |
| dc.description | 2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 -- -- Malatya; Inonu Universitesi -- 113052 | |
| dc.description.abstract | Optical character recognition (OCR) systems have been widely used to convert documents into digital form. There are lots of both commercial and open source OCR systems available, but a benchmark on Turkish OCR is nonexistent. In this work, we first prepared two publicly available datasets for Turkish OCR, consisting of scanned document images and mobile camera captured document images. Then, we evaluated the Turkish OCR performance of three popular open source OCR systems (Tesseract, CuneiForm, GOCR) on the datasets. Tesseract outperformed the other two on both datasets. © 2021 Elsevier B.V., All rights reserved. | |
| dc.identifier.doi | 10.1109/SIU.2015.7130278 | |
| dc.identifier.endpage | 2077 | |
| dc.identifier.isbn | 9781467373869 | |
| dc.identifier.scopus | 2-s2.0-84939160527 | |
| dc.identifier.scopusquality | N/A | |
| dc.identifier.startpage | 2074 | |
| dc.identifier.uri | https://doi.rog/10.1109/SIU.2015.7130278 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12899/3144 | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | tr | |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | Scopus_20251023 | |
| dc.subject | benchmark | |
| dc.subject | dataset | |
| dc.subject | mobile device | |
| dc.subject | scanner | |
| dc.subject | Tesseract | |
| dc.subject | Turkish OCR | |
| dc.title | Turkish OCR on mobile and scanned document images | |
| dc.title.alternative | Mobil Cihaz ve Tarayici Görüntülerinde Türkçe Karakter Tanima | |
| dc.type | Conference Object |












